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INTRODUCTION

One of the major uses of geographical information systems (GIS) is to provide 
an environment that facilitates distributed modeling. Such modeling, frequently 
requires the integration of diverse input data such as point ground measurements, 
thematic maps, and areal remotely-sensed observations. The required input fields 
rarely are available at the desired modeling scale and their use at a scale other than 
that at which they were observed (e.g., via resampling) is not always straightforward. 
Conversely, if the data are allowed to determine the scale at which the modeling is 
to take place, the resulting model outputs may not be suitable for addressing the 
research problem in question. In general, modelers tend to find some middle ground 
and make decisions on modeling scale based on the resolution of the available input 
data, computational resources, and their perception of the required resolution of the 
ouqruts. However, these decisions are not without consequences, the most important 
of which is that model outputs may vary as a function of scale.

The recognition of such scale effects has led to research into the scaling prop
erties of environmental fields. The term “scaling” has come to have multiple defi
nitions, depending not only on the general discipline (e.g., geography, physics, or 
ecology) but the application within the discipline (e.g., within geography, remote 
sensing as opposed to cartography). This has led to some confusion about the term. 
In general, a process is said to be scaling if no characteristic length scale exists, i.e., 
the statistical spatial properties of the field do not exhibit scale-dependent behavior.

Why do scaling problems occur; that is, why cannot data or model outputs simply 
be scaled up or down to meet the task at hand? Part of the answer is that remotely
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sensed and gridded model output fields share an important property concerning their 
spatial variability: both are inherently scale-limited. For remotely sensed observa
tions, little information can be inferred below the resolution of the sensor. For 
distributed outputs, the model grid spacing determines the smallest spatial scale at 
which fields may be realized. The limitations imposed by resolution and grid spacing, 
or their interaction, can hamper modeling efforts over large areas, especially when 
the processes are spatially autocorrelated. Such processes often scale non-linearly 
such that the moments of the field (e.g., the mean and the variance) obtained at one 
spatial scale may be significantly different from those obtained at a larger or smaller 
scale.

An important environmental variable whose scaling properties have generated 
considerable interest is soil moisture. Soil moisture is highly variable over a large 
range of scales, often showing as much variability over a distance of meters as it 
does over hundreds of kilometers. This behavior is typical of scaling fields. Its spatial 
scaling properties are poorly understood because it is so difficult to model and 
measure. This in turn confounds validation efforts given the problematic comparison 
of sparse, point ground measurements with areal outputs usually produced by dis
tributed models. Passive and active microwave remote sensing techniques have been 
developed that provide soil moisture estimates in the first 5 cm or so of the soil 
column for predominantly bare or sparsely vegetated surfaces. These remote methods 
may provide improved validation and modeling capability, but the effects of reso
lution (scale) on retrieved measurements are largely unknown.

Some of the major scaling issues involved with modeling in general, and soil 
moisture in particular, may be better understood with the following example. Con
sider a hydrological model with distributed input layers such as radiation, precipi
tation, temperature, topography and soils at 1 km resolution. If the required resolution 
of an output soil moisture field is to be 10 km, two choices are available: (a) aggregate 
the input layers first to 10 km, to produce 10 km output fields; or, (b) keep the input 
fields at 1 km resolution, run these through the model to produce 1 km output fields, 
and then aggregate the outputs to 10 km grid spacing. Either method is legitimate; 
however, the results from each may not be the same. The degree to which they differ 
depends in part on the non-linearity of the model equations relative to the input 
fields, the spatial autocorrelation and scaling properties of those fields, and the 
amount of model spatial interaction. Modeling at a fine scale and aggregating at 
output ensures that no fine scale variability is lost, but this option is often not 
available, either because of lack of data or the increased computational burden. 
Efforts to parameterize sub-grid scale variability are a means for adjusting the 
statistical properties of fields to incorporate unmodeled fine scale variability (such 
parameterizations are used frequently in the climatological and hydrological sci
ences, where non-linearity is common).

This modeling problem may be complicated further by scaling effects in remote 
sensing data frequently used to derive input fields or validate outputs. The transfor
mation of sensor radiances to environmental fields may itself be non-linear. For 
example, surface thermal radiance is non-linearly related to surface temperature 
through the Planck equation. Similarly, microwave radiance is non-linearly related
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to brightness temperature, which is then related to near-surface soil moisture state. 
This leads to another type of scaling problem where the areal average of temperatures 
at a fine resolution may not be equal to the temperature derived from averaging the 
radiances first for the same area. Thus, there is a dependence of temperature on 
scale, which may then be convolved with the first situation of non-linear model 
equations (if the fields are used to drive a model).

These aspects of scaling have been recognized for some time, although there 
has been little in the way of a framework for exploring them. The common mode 
of exploration has been to realize fields at fine scales, aggregate, and compare the 
results with those realized at coarse scales (e.g., see Wood and Lakshmi, 1993; 
Sellers et al., 1995). The hope is that either linear or otherwise known relationships 
may be found that link field statistics, at least for some limited range of scales. 
Otherwise, if the fields do not scale linearly, or if we do not know how to model 
the non-linearity, we are forced to model at the scale of interest, regardless of its 
practicality.

Development of a strategy for scaling in distributed modeling is a formidable 
task, as it involves the complex interactions among data and model transforms just 
described. However, a framework for the systematic exploration of scaling recently 
has been developed. It has been shown that non-linear spatial variability among 
seales may be a consequence of fields that are generated by what are known as 
cascade processes (e.g., see among others. Monin and Yaglom, 1987; Gupta and 
Waymire, 1990). In such processes, the field fiux (e.g., of moisture, energy, etc.) is 
the result of some cascading down of large scale (large area) fluxes to successively 
smaller and smaller scales. Cascade processes can produce fields which exhibit 
“multiscaling” or “multifractal” behavior, characterized hy spatial or temporal scal
ing exponents which are non-linear with respect to the order of statistical moment 
(e.g., see Schertzer and Lovejoy, 1987; Meneveau and Sreenivasan, 1987; and Mar
shak et al., 1994). The development of a theoretical basis, and accompanying data 
analysis methods (e.g., see Davis et al., 1994), suggests new approaches for the 
systematic analysis of the multiscale variability of environmental fields, approaches 
that seem particularly well suited to the issue of scaling within GIS. It is this 
multiscaling perspective that directs the focus of our research.

In this chapter we explore the multiscaling properties of soil moisture fields for 
a small basin in Oklahoma, the Little Washita, derived in two ways: (1) ffpm a 
passive microwave sensor at 200-m resolution; and, (2) output from a distributed 
energy and water balance model at 30-m grid spacing. Obtained during the Washita 
’92 field experiment (Jackson and LaVine, 1994), these data sets provide a unique 
opportunity to develop a better understanding of how remotely sensed and modeled 
fields may be integrated to address scaling issues. The remainder of this chapter is 
organized as follows. We briefly present some basic concepts concerning simple 
scaling and multiscaling, including equations relating moments at differing scales. 
The data sources for the derived soil moisture fields are then described. We next 
present the methodology and results of a multiscale analysis of the fields for nine 
successive days during a period of soil moisture dry down. Our analysis is based 
on empirical plots of log-log relationships of statistical moment as a function of
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scale. From these plots we determine scaling exponents and look for signals of 
multiscaling. Lastly, we discuss a relevant application, prediction of the statistical 
behavior of fields at scales other than the observational scale, and present some 
caveats about the use of multiscale analysis as well as its possibilities.

SCALING AND MULTISCALING PROPERTIES

It recently has been suggested that many geophysical processes may exhibit 
multiscale or multifractal behavior (among others, spatial rainfall: Gupta and 
Waymire, 1990, 1993; turbulence: Schmitt et al., 1992; microwave brightness tem
peratures: Jourdan et al., 1993; topography: Lavall6e et al., 1993; Weissel et al., 
1994; river basins: Rodriguez-Iturbe et al., 1994; and clouds; Tessier et al., 1993). 
A multiscaling framework allows for spatially heterogeneous processes to operate 
and produce spatially heterogeneous fields characterized by scaling exponents that 
are non-linear with respect to the order of statistical moment. Soil moisture fields 
are the result of many different processes acting over different scales, such as 
topography, soil characteristics, precipitation, vegetation distribution, and so on. As 
a result, a multiscaling framework seems an appropriate place from which to examine 
the scaling properties of these fields.

Simple Scaling and Multiscaling

For remote sensing or raster GIS, fields are taken over a grid with a particular 
grid spacing and extent. If we average all the grid cells within the image or grid, 
we will have one value at the coarsest grid spacing or scale factor, denoted by = 
1. As resolution is increased, from this single value, to 4, 16, 64 values, and so on, 
down to the finest resolution, we have scale factors which decrease as X, = 1/1, 1/2, 
1/4, 1/8, averaging over squares of decreasing size whose sides have length X. A 
process X is defined as spatially scaling if the following is true;

where the notation E[<t)J denotes the expected value (or statistical ensemble average) 
of the field at scale factor X. This expectation is equal to the expected value of *e 
field at the scale factor X = 1, times a scaling function where /C is the scaling 
exponent. Note two points. First, X = 1 need not refer to the actual coarsest aggre
gation possible for a field of a given extent, but is simply a reference point. For 
example, X = 1 could correspond to an aggregation of fi4 x 64 grid cells in a field 
of size 512 x 512, and thus X = 1/2 would refer to an aggregation of 32 x 32, and 
so on. Secondly, X ^ 1 because it is defined as the ratio of a given resolution to that 
of the coarsest resolution, i.e., the reference resolution or the largest scale factor, 
following the convention of Gupta and Waymire (1990). Often the scale factor is 
defined in an opposite sense, as X-' (e.g., as in Schertzer and Lovejoy, 1987), where 
the largest scale factor corresponds to the finest resolution. In this case, the scaling
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exponents, though of identical magnitude, are positive, whereas with the definition 
used here, they are negative.

Eq. 1 may be generalized to the expected moments of a field other than the mean 
(first moment) as:

(2)

where q is the order moment and where there are now a set of scaling exponents, 
K{q) associated with the moments.

A process is said to be simple scaling if the K{q) are linearly related to the order . 
of moment q such that:

« ^^‘^£[((1)1)’] (3)

For simple scaling there is only one scaling exponent C and the process is said to 
be “fractal” or “monofractal.” The expected moments of a field can then be related 
to this single value as a function of scale. For multiscaling the K{q) are non-linearly 
related to q, with a set of scaling exponents K{q) exactly as given in Eq. 2 above, 
i.e., the exponents are not linear with respect to q. The curve of K{q) for a multi
scaling field is typically convex (downwards, with our definition of i, i.e., negative 
second derivatives of K{q) with respect to q), and this behavior now has become the 
distinguishing empirical feature of multiscaling (Gupta and Waymire, 1990; Mene- 
veau and Sreenivasan, 1991; Rodriguez-Iturbe et al., 1994; Weissel et al., 1994). 
(Note that the non-linear behavior of Ki_q) may be best observed 'for small values 
of q, usually with 0 < § < 1).

Eq. 2 has an important consequence for scaling applications in remote sensing 
and GIS. By definition, the scaling exponents are not a function of scale (although 
empirically we may observe them only over a limited range of scales). If the K(q) 
are known, or if we have determined a priori that they can be found accurately at 
the scale of observation, this implies a process may be observed or modeled at one 
scale, and its statistical properties inferred at another scale. Given a remotely sensed 
field with a given scale factor X whose moments are calculated, the moments at 
another scale factor can be found using Eq. 2.

DATA SOURCES

The data for this work are derived from the Washita ’92 field experiment in 
Oklahoma during June 1992 (Jackson and LaVine, 1994). The Little Washita River 
basin is a 525-sq. km watershed which has a mixture of pasture and agricultural 
land use. Remotely sensed data were acquired from aircraft June 10 to 18 (except 
June 15). An energy and water balance model also was run for this same period to 
estimate near surface soil moisture state. During the nine days, there was a consistent 
dry down of near surface soil moisture.
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ESTAR

ESTAR refers to the electronically scanned thinned array radiometer airborne 
remote sensing instrument, which measures the microwave emission from the surface 
at 1.4 GHz (L-Band). At this wavelength, the intensity of the observed radiation is 
proportional to the brightness temperature (which is the product of the surface 
emissivity and the soil thermodynamic temperature.) Also at this wavelength, the 
soil emissivity is particularly sensitive to volumetric soil moisture (Wang and 
Schmugge, 1980; Dobson et al., 1985). Using a soil moisture retrieval algorithm 
that incorporates information about soil texture and surface cover, brightness tem
peratures are converted into estimates of soil moisture.

During the past 15 years, there has been a steady progression of field experiments 
that have demonstrated the success of using passive microwave remote sensing for 
the determination of soil moisture. Reviews are available in Jackson and Schmugge 
(1986) and Engman (1991). L-band passive microwave remote sensing for soil 
moisture can make corrections for vegetation up to canopies approximately the size 
of mature com fields (Jackson and Schmugge, 1991) which makes this technique 
useful for many applications.

The ESTAR instrument is the most current version of airborne microwave radi
ometers developed by NASA and flown on NASA’s C-130 and P3 aircraft. The 
instrument has a resolution of i8° and a swath width of i45 . When imaging at 
7000 ft, this results in post-processing resolution of approximately 200 m. It has 
been applied to measure regional soil moisture over the Walnut Gulch, AZ watershed 
(Jackson et al., 1993), a semi-arid environment, and the Little Washita, OK water
shed. It is this latter soil moisture product that we have used in the analysis presented 
in this chapter.

Soil Moisture Modeling

Soil moisture was modeled using a distributed water and energy balance model 
at 30 m grid spacing, and includes vegetation canopy effects of interception, surface 
storage, and transpiration based on Penman-Monteith. The soil column uses a three- 
layer representation which includes a thin upper layer, a root zone/transmission layer 
and a lower saturated layer. Surface infiltration is modeled using Philip’s equation 
and the soil evaporation through a resistance formulation. Topographic effects on 
the lateral, downslope transmission of water in the saturated zone are modeled using 
the concepts of TOPMODEL (Beven and Kirkby, 1979). Famiglietti and Wood 
(1994a) describe the model and Famiglietti and Wood (1994b) its application to the 
Kings Creek, KS watershed which was part of the First ISLSCP Field Experiment 
(FIFE) (Sellers et al., 1988). Extensions to the model include the thin upper layer 
and the resistance parameterization to the soil evaporation.

The model is usually run either in the full energy balance mode in which 
incoming solar radiation, downwelling long wave radiation and precipitation are the 
forcing variables; or in a Penman-Monteith parameterization which utilizes net 
surface radiation. Surface meteorological data (wind, air temperature, and humidity) 
are also required to drive the model.
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Model parameters can be divided up into topographic parameters, soil parame
ters, and vegetation parameters. The topographic parameter is the soil-topographic 
index, InCaT^/T) tanP), where for location i (a unit length of contour) within a 
watershed, a represents the upslope contributing area whose flow paths cross i, 7) 
is the local soil transmissivity, P is the local slope, and 7; is the watershed average 
soil transmissivity. This index is estimated using digital elevation and soil data. Soil 
parameters can be estimated from soil texture data using a variety of empirical 
relations (for example see Rawls et al., 1982). Vegetation parameters represent the 
biophysical controls on evapotranspiration and the interaction of the canopy with 
the atmosphere.

In the model runs described here, the upper thin soil layer was 10 cm in depth. 
The model was run for 9 days (June 10 to 18, 1992) at a 3-h time step using 
meteorological data collected during the experiment.

MULTISCALING ANALYSIS

We estimated the scaling exponents of each of the ESTAR and model soil 
moisture flelds as follows. First, a hasin mask was applied to each image to limit 
our analyses to soil moisture values within the watershed. Only the northern half of 
the watershed was imaged by ESTAR (see Figure 1). Next, realizations of each field 
at different scale factors were found by aggregating pixel values. The largest scale 
factor, corresponding to the coarsest scale (A, = 1), used aggregations of 8 x 8 pixels 
for the ESTAR data. The reason for such a limited aggregation size was that each 
image contained quite a few missing data values, for example over roads or heavy 
vegetation. These missing data were excluded from the computation of the moments 
at each level of aggregation. If a particular pixel at the smallest scale factor had a 
missing value, all subsequent aggregations involving that pixel were also treated as 
missing. The largest aggregation size that also included a reasonable number of 
pixels from which to calculate the moments was then 8x8 (1600 m). For the model 
fields, the largest scale factor had an aggregation size of 128 x 128 pixels (3840 m) 
with smallest scale factor equal to 1/128 (30 m).

The second through sixth moments were then calculated for each image at each 
scale factor and the value of the moment plotted against scale factor in logarithmic 
space. The first moment was excluded because the mean of an image should not 
change as pixels are aggregated except for a variable support size with scale, as 
discussed below. Refering to Eq. 2, the slopes of these log-log lines of moment vs. 
scale were then calculated to estimate K(q) using unweighted least-squares regres
sion. Finally, the K(q) were plotted as a function of q to look for signals of multi
scaling. Before we present the results of the scaling analysis, we first compare model 
mean and standard deviation with those obtained from ESTAR.

The mean soil moisture for modeled and remotely sensed fields agreed well, an 
encouraging result (see Tables 1 and 2, and Figure 1). Because the southern portion 
of the basin was not imaged by ESTAR, only that portion of the modeled fields 
that overlaps the ESTAR imagery was used to find the mean and standard deviation 
(but the higher order moments were calculated using the full basin, as shown in
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Figure 1 ESTAR (a) and water and energy balance model (b) soil moisture fields for June 
10, 1992. The resolution of the ESTAR imagery is 200 m, and the grid spacing of 
the model fields is 30 m. The black areas in the ESTAR imagery are missing data 
(the diagonal line running south to north is a road). Each image has been histogram- 
equalized separately to highlight the spatial variability present, so direct comparisons 
among grey levels are misleading. Basin statistics are given in Tables 1 and 2.

Figure 1). The standard deviations were quite different between the two sources. 
The standard deviation of the modeled fields at 30-m grid spacing increased with
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Table 1 Mean, Standard Deviation and Scaling Exponents for the Energy and 
Water Balance Model Soil Moisture Fields (30-m Resolution)

Date Mean [%] G[%] K(2) m m K{5)
June 10 25.723 14.095 -0.039 -0.100 -0.170 -0.245 -0.322
June 11 23.288 14.655 -0.053 -0.134 -0.226 -0.321 -0.419
June 12 21.289 15.067 -0.067 -0.170 -0.284 -0.400 -0.516
June 13 19.662 15.384 • -0.083 -0.207 -0.341 -0.476 -0.609
June 14 17.888 15.701 -0.103 -0.255 -0.416 -0.574 -0.728
June 15 16.591 15.955 -0.122 -0.297 -0.478 -0.654 -0.825
June 16 15.800 16.125 -0.135 -0.324 -0.518 -0.706 -0.886
June 17 14.892 16.185 -0.149 -0.356 -0.566 -0.767 -0.960
June 18 14.358 16.213 -0.158 -0.376 -0.594 -0.804 -1.004
Note: Mean and standard deviation are found only for the areas of the basin that 

overiap with the ESTAR imagery. The scaiing exponents are caiculated from 
the entire Little Washita basin.

Table 2 Mean, Standard Deviation and Scaling Exponents for the ESTAR Soil 
Moisture Fields (200-m Resolution)

Date Mean [%] a[%] K{2) K(3) K(4) K(5) K(6)
June 10 22.576 6.586 -0.079 -0.153 -0.247 -0.360 -0.492
June 11 20.411 6.031 -0.084 -0.157 -0.248 -0.356 -0.480
June 12 19.928 5.824 -0.086 -0.157 -0.242 -0.341 -0.454
June 13 17.914 5.691 -0.093 -0.169 -0.257 -0.356 -0.466
June 14 19.558 5.949 -0.094 -0.159 -0.238 -0.331 -0.438
June 16 16.986 5.184 -0.099 -0.178 -0.270 -0.377 -0.499
June 17 15.011 5.058 -0.094 -0.173 -0.266 -0.372 -0.489
June 18 11.591 5.191 -0.127 -0.226 -0.336 -0.455 -0.586

dry down (however, the second moment of the model data decreased at this same 
spacing). We would not expect the standard deviation of a field at 30 m to match 
that at 200 m, so we aggregated the model results to 200 m and recalculated the 
standard deviation. The model standard deviation, though still significantly higher 
than that of the ESTAR data, did however now decrease with dry down.

ESTAR Fields

Figure 2 shows plots of moment vs. scale factor for all days. There is excellent 
log-log linearity in all cases. The scaling exponents K{q) were found by determining 
the slope of each of these lines, the results of which are summarized in Table 2. 
Although the values were always greater than 0.98, and generally greater than 
0.99, the range of scale factors over which the K{q) are estimated is narrow (from 
200 to 1600 m).

Plots of K(q) as a function of q are shown in Figure 3. For all days these curves 
show signals of multiscaling, namely non-linear growth in K{q) with order moment, 
and convex shape. The scaling exponents for a particular moment clearly differ with 
day, but there is no unambiguous change related to mean soil moisture conditions 
during the dry down. However, the last three days, June 16 to 18, and in particular.
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Moment 2

Moment 4

Moment 6

Moment 3

Moment 5

+ June 10
X June 11
o June 12

June 13
X June 14
• June 16
▲ June 17
♦ June 18

log( Scale Factor)

Figure 2 Plots of log(moment) vs. log(scale factor) for the ESTAR imagery. The slopes of 
these lines estimate K{q).Vrte range of scale factors uses aggregations over areas 
from 200 to 1600 m.

June 18, do have the smallest K(q) values, and thus, will have smaller moments for 
a given scale factor. The second scaling exponent K(2) does show a definite decrease 
with day for all days except one.
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Order Moment

Figure 3 Plots of the curves K(q) as a function of the order moment {q) for the ESTAR Imagery.
The curves show the signals of multiscaling: non-linear growth of the K{q) and 
convex shape.

Modeled Fields

The modeled fields also show reasonable log—log linearity over a wide range of 
scales; however, the curves are slightly concave for some days and moments (Figure 
4). Slightly different K(q) values would be estimated depending on the range of 
scale factors used (we used the entire range). Table 1 lists the scaling exponents 
found from Figure 4. In contrast to the ESTAR fields, all moments monotonically 
decrease with dry down. This is seen in Figure 5 showing K{q) as a function of q. 
There are signals of multiscaling for days June 10 to 13, where the curves are non
linear and convex. On and following June 14, the curves are either straight or slightly 
concave. The behavior of these curves requires further study.

DISCUSSION

As given in Tables 1 and 2, the K(q) can be quite different between the ESTAR 
and model fields. This is seen more clearly in Figure 6. Restricting our comparison 
to those days when the model fields showed signals of multiscaling, the K{q) are 
always larger (less negative) for the model fields except on June 13. The degree of 
similarity or dissimilarity of the spatial scaling properties of each field, however, is 
difficult to determine based on the K(q) alone. We show below how this information 
can be used in a more applied fashion.
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Figure 4 As in Figure 2, plots of log{moment) vs. log(scale factor) for the water and energy 
balance soil moisture fields. The range of scale factors uses aggregations over areas 
from 30 to 3840 m. Note the slight non-linearity in some of the plots.

Prediction at Other Scales

As discussed earlier, E<). 2 allows for the inference of the statistical properties 
of a field at scales other than those modeled. As an example, consider the ESTAR 
and the modeled soil moisture fields for June 10 and their seeond moment. As the



M
od

el
 K

(q
)

MULTISCALING ANALYSIS IN DISTRIBUTED MODELING 105

Order Moment

Figure 5 As In Figure 3, plots of the curves K{q) as a function of the order moment {q) for 
the modeled fields.

Figure 6 Model scaling exponents vs. ESTAR exponents for the four days v/hen both shov\/ed 
signals of multiscaling. Each line Is a day and the numbers within a line are the 
order moment. The 1:1 line runs diagonally.
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scaling exponents are determined from the slopes of the moments vs. scale factor, 
the degree of linearity in these plots determines the stability of the estimates of K(jq) 
at various scales. In Figures 2 and 4, the curves are fairly linear over all scales so 
we should be able to accurately estimate the scaling exponents from only a few 
points, say at the three largest scale factors. Estimating K{(^ in this way is equivalent 
to estimating the exponents only having realizations of the field at those scales. For 
the modeled fields, it is the equivalent of aggregating grid cells to that scale (but 
the outputs may not be the same as aggregating input variable layers and running 
the model at the coarser grid spacing).

Suppose, based on a priori studies, that we have found that scaling of both fields 
is usually well behaved, i.e., that we see linear behavior over the range of scales (as 
in Figures 2 and 4). Further, suppose we have available only 800-m remotely sensed 
fields and only model fields at 960-m grid spacing. If we aggregate the ESTAR soil 
moisture field to simulate the 800-m data set, we obtain K{2) = -0.089, with a second 
moment value of 499, using only the 800- and 1600-m aggregations (the value of 
the second moment is that obtained at 800 m). Similarly, if we aggregate the model 
field to 960 m, we find K(^) = -0.026, with a second moment value of 670, again 
using only this realization and the next two aggregations up (1920 and 3840 m). We 
then predict the second moment for the ESTAR field at 200 m using Eq. 2 (ignoring 
any small additive constants of proportionality):

jS^[(<l)x)^] “ [1/4]-^“® X 499 = 564

where the scale factor A, = 1/4 is the ratio of the pixel lengths (200/800). The predicted 
second moment for the model soil moisture field at 30 m is;

£[((1)J2] « [l/32]-« “s X 670 = 733

where the scale factor X = 1/32 is the ratio of the pixel lengths (30/960). These 
compare reasonably well to the actual values of 553 and 778, respectively. Thus, 
we have attempted to predict variability below the actual modeling scales.

As another example, we may attempt to predict the model variability at 30 m 
using the 200-m ESTAR fields. We have already seen that the model variance, when 
aggregated to 200 m, is too large relative to the ESTAR data. If we perform the 
opposite comparison, using the value of the second moment of the ESTAR field at 
200 m, 553, with K(^) = -0.079, we have the expected value of the second moment 
at 30 m as:

^[(W^] “ [30/2001-O0’® X 553 = 642

For comparison, we convert this to the more familiar standard deviation in units of 
percent soil moisture by subtracting the square of the mean ESTAR soil moisture 
for that day (21.78%):

a = [642 - [21.78]2]>« = 12.9%
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The standard deviation of the model on that day at 30 m is about 14% (the standard 
deviation of the ESTAR imagery at 200 m is 6.6%, from Table 1). Note that in this 
calculation we have used the mean value of the ESTAR soil moisture field at 800 
m, which is slightly different than the mean at 200 m, for reasons discussed below.

The above exercises illustrate the potential value of such a technique for scaling 
in terms of GIS-based modeling and remote sensing. In a given basin, it may be 
that log-log linearity of moment vs. scale for soil moisture holds under many 
different types of environmental conditions (as it did to some extent during the dry 
down at the Little Washita). Modeling or observation of soil moisture state over 
many scales would need to take place only to determine if this were true. Inferences 
about soil moisture variability could then be made by estimating the moments under 
the particular conditions from the most practical and available models and data. For 
example, for a very large basin, such as the Mississippi, limited studies across scales 
could be conducted to first determine scaling properties. The actual modeling could 
then take place using a model with coarse grid spacing firom which K(,q) could be 
estimated at any particular time and inferences about variability at finer grid spacings 
made (however, see the section below on Caveats). Thus, even though K(,q) may 
change with environmental conditions, the scaling properties of the fields could be 
exploited to greatly reduce the required modeling.

In the best case, direct links may be made between the behavior of the K(q) and 
environmental conditions such as vegetation, topography, and soils properties that 
affect the moisture fields. Such links may be central to understanding the physical 
mechanisms by which soil moisture variability is manifested across scales over the 
landscape. It might also limit the amount of small scale modeling and observation 
required by allowing prediction based on more easily attainable environmental data 
such as digital topography.

The preceding discussion and illustrations only are meant to show the potential 
applications within a multiscaling framework. Without a more solid physical basis 
from which the multiscaling properties of soil moisture fields are a natural theoretical 
consequence, such discussions must be considered premature, especially in an 
applied sense. However, exploratory analyses are valuable because they can provide 
evidence to support or refute a multiscaling hypothesis, and thus guide later inves
tigations. Furthermore, from a pragmatic view, quantification of the spatial scaling 
properties of fields within a structured fi-amework can aid our understanding of the 
most appropriate ways to integrate data fi'om different scales within a modeling 
environment such as GIS.

Caveats

As cautioned earlier, exploration of multiscaling behavior, including the estima
tion of scaling exponents, is rarely an unambiguous process. First, the observation 
of log-log linearity over some range of scales is rather arbitrary. High correlation 
coefficients may be found for non-linear curves, as in Figure 4. Estimation over 
either the first half or second half of the second moment curves for the model fields 
would yield slightly different values of K(,q).
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Secondly, each of the points in these curves is obtained from differing numbers 
of observations, and in general have different variances. Classically, when perform
ing such a regression, weights for each point should be used inversely proportional 
to the variance. If the number of observations is great enough, for example if we 
have a large image, and do not aggregate over too many pixels, this should not be 
an issue; otherwise a weighted regression can always be performed.

The problem of missing data points is a concern as well. We did not use ESTAR 
aggregations that contained any missing data. Because even one 200-m missing data 
pixel could contaminate an entire 8x8 aggregation, the geographical support (area) 
over which the moments at the coarsest aggregation were calculated was different 
than that at full resolution. In other words, the effective support of the field is now 
no longer 2-D (two-dimensional), i.e., it is not completely plane filling, but rather 
will have some smaller dimensionality. Thus there is the dimensionality of the field 
itself (which is related to K{q)) as well as that of the underlying effective support. 
One way of seeing this is by comparing the means at each scale. For grid aggregations 
the means should all be equal. However, for the ESTAR data we observed that means 
decreased with scale on all days (for example on June 10 we observed a decrease 
from 22.57% to 21.3% as resolution decreased from fine to coarse). This decrease 
with scale also will be observed for the higher order moments. The dimensionality 
of the support area itself should then be considered as it may affect the estimation 
of K(q). Note that the problem of the effective dimension of the support is caused 
here by the missing data and the procedure used to take these into account at coarser 
resolution. If all data were available, the effective dimension of the support would 
be equal to 2.

FURTHER REMARKS

We return to an aspect of scaling mentioned in the first section, that of non
linear transformations of input observations to output process fields. Although there 
is no room to discuss this at length here, a few points are worth considering given 
the general theme of this book. To reiterate, problems may occur because inputs are 
aggregated before transformation. For example, in performing our analyses of the 
ESTAR data we assume that the 2(X)-m field is representative of soil moisture state, 
and analyze it by aggregating soil moisture values. We did not first aggregate the 
radiances, and then convert these radiances (non-linearly) to brightness temperatures 
(which is what takes place with a coarse resolution sensor). In the first case, we are 
examining the spatial scaling properties of the field at that resolution and beyond. 
In the latter we convolute the non-linearity of the transfer problem (Planck’s equa
tion) with that of the field itself at successive levels of aggregation (e.g., see Hall 
et al., 1992). We could always measure the soil moisture directly in the field without 
resorting to remote sensing, avoiding the Planck equation entirely, and find that the 
field is still multiscaling. This is because the Planck equation is not the generator 
of the spatial field (it is non-spatial), but merely a conversion from one type of 
observation to another. Multiscaling is concerned primarily with the scaling of the 
field itself, and not with such non-linear conversions, though the two may be linked
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in ways that are not entirely clear yet (given that the radiances must he responsive 
to soil moisture state).

The same problem exists for modeled fields, i.e., aggregating input layers first 
and running a model vs. running a model and aggregating outputs. The focus 
typically is on whether or not model outputs scale linearly so that aggregated inputs 
may be used to model the process at large length scales. Generally, little emphasis 
is placed on understanding the spatial properties of the fields themselves. The reasons 
for this are not surprising. Given high computational (or observational costs) one 
would prefer to model on a coarse grid than a fine one, and utilize sub-grid scale 
parameterizations to correct for any important variability that may be missed. How
ever, simply because similar means are obtained in aggregation experiments, this 
says little about the spatial scaling properties of the process, yet fields are routinely 
(and often incorrectly) labeled as “scaling” based on this criterion alone. The dis
tinction here is between knowing whether a process (soil moisture, for example) is 
spatially scaling, as opposed to whether a particular modeling procedure leads to 
outputs whose means scale. These are not the same thing, though the latter is 
frequently taken for the former. There also has been little interest in predicting 
moments other than the mean, but recently it has been shown that for certain 
processes, including soil moisture, the second and higher order moments are of 
importance in a variety of applied ways (e.g., soil moisture variance may be related 
to the relative roles of atmospheric vs. land surface forcing). Furthermore, except 
for simple probability distributions, such as the normal distribution, all the statistical 
moments of order q are needed to have a complete description of the statistical 
properties of the fields. These issues are all complex and further research will be 
needed to resolve them.

SUMMARY

One of the fundamental issues of modeling is that of scale. The great potential 
of combining remotely sensed data within GIS-based modeling environments has 
yet to be realized. One reason for this is a lack of understanding about the nature 
of scaling problems. Most of the emphasis within both remote sensing and GIS has 
been placed on attempting to accurately reconstruct spatial means among scales in 
the presence of non-linear data and model transformations. These ad hoc attempts, 
while perhaps yielding problem-specific insights, have provided little guidance 
towards the creation of more generalized approaches. Such approaches may begin 
with a thorough treatment and statistical description of the spatial scaling properties 
of the geophysical fields themselves. This is because the spatial structures of fields 
routinely used in the earth sciences, whether surface temperature, vegetation indices, 
solar radiation or soil moisture, under differing environmental conditions, have not 
been adequately researched, nor have the physical mechanisms which give rise to 
this variability.

Multiscaling analysis may provide the basis for a more coherent exploration of 
scaling, particularly within the context of integrated modeling using remotely sensed 
data and GIS. Many geophysical fields are spatially heterogeneous, the result of
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different spatially heterogeneous processes acting over different scales. Cascade 
processes can account for such heterogeneity while still producing variability which 
is organized (via multiscaling). Such fields are characterized by multiple scaling 
exponents that relate the moments of the field at one scale to those at another.

Both as an example of this approach, as well as an investigation of an important 
problem by itself, we have analyzed the multiscaling properties of remotely sensed 
and modeled soil moisture fields for a small basin. For both types of fields, we have 
found signals of multiscaling, namely, log-log linearity of statistical moment as a 
function of scale, and non-linear dependence of scaling exponents with order 
moment. This suggests that exploration of the physical mechanisms which lead to 
such behavior is appropriate. We have also shown how multiscaling, through the 
derivation of scaling exponents, may be used to infer spatial variability at scales 
other than the measurement scale. In particular, we demonstrated how a coarse 
remotely sensed field could be used to predict model variability at a much finer grid 
spacing. This ability may prove to be useful for the integration of remote sensing 
within GIS-based modeling.

One of the pioneers in remote sensing, David Simonett, fi'equently admonished 
his students to “pick a scale germane to the task.” In the current era of global change 
research, this elementary truth has become increasingly difficult to put into practice. 
Multiscaling may be an important key, for it at least suggests the possibility of 
freeing the modeling process from the constraints imposed by the observational scale 
of inquiry.
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